skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Shunrong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We use the TIEGCM‐NG nudged by MAGIC gravity waves to study the impacts of a severe thunderstorm system, with a hundred tornado touchdowns, on the ionospheric and thermospheric disturbances. The generated waves induce a distinct concentric ring pattern on GNSS TIDs with horizontal scales of 150–400 km and phase speeds of 150–300 m/s, which is well simulated by the model. The waves show substantial vertical evolution in period, initially dominated by 0.5 hr at 200 km, shifting to 0.25 hr and with more higher‐frequency waves appearing at higher altitudes (∼400 km). The TADs reach amplitudes of 100 m/s, 60 m/s, 80 K, and 10% in horizontal winds, vertical wind, temperature, and relative neutral density, respectively. Significantly perturbations in electron density cause dramatic changes in its nighttime structure around 200 km and near the EIA crest. The concentric TIDs are also simulated in ion drifts and mapped from the Tornado region to the conjugate hemisphere likely due to neutral wind‐induced electric field perturbations. The waves manage to impact the ionosphere at altitudes of ICON and COSMIC‐2, which pass through the region of interest on a total of 8 separate orbits. In situ ion density observations from these spacecrafts reveal periodic fluctuations that frequently show good agreement with the TIEGCM‐NG simulation. The O+fraction observations from ICON indicate that the density fluctuations are the result of vertical transport of the ions in this region, which could result from either direct forcing by neutral winds or electrodynamic coupling. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. An earthquake is a seismic event resulting from a sudden release of energy in the lithosphere, which produces waves that can propagate through the atmosphere into the ionosphere, causing ionospheric disturbances, and excites an additional electric field in the lower ionosphere. Two large-scale traveling ionospheric disturbances (LSTIDs) at daytime Turkey longitudes were found, with phase speeds of 534 and 305 m/s, respectively, after the second strong earthquake at 10:24 UT on 6 February 2023. During strong earthquakes, the equatorial ionospheric currents including the E-region equatorial electrojet (EEJ) and F-region ionospheric radial current (IRC) might be perturbed. At the Tatuoca station in Brazil, we observed a stronger-than-usual horizontal magnetic field associated with the EEJ, with a magnitude of ~100 nT. EEJ perturbations are mainly controlled by neutral winds, especially zonal winds. In the equatorial F-region, a wave perturbation of the IRC was caused by a balance of the electric field generated by the zonal winds at ~15° MLat, the F-region local winds driven by atmospheric resonance, and the additional polarization electric field. Our findings better the understanding of the complex interplay between seismic events and ionospheric current disturbances. 
    more » « less
  3. We use simultaneous auroral imaging, radar flows, and total electron content (TEC) measurements over Alaska to examine whether there is a direct connection of large-scale traveling ionospheric disturbances (LSTIDs) to auroral streamers and associated flow channels having significant ground magnetic decreases. Observations from seven nights with clearly observable flow channels and/or auroral streamers were selected for analysis. Auroral observations allow identification of streamers, and TEC observations detect ionization enhancements associated with streamer electron precipitation. Radar observations allow direct detection of flow channels. The TEC observations show direct connection of streamers to TIDs propagating equatorward from the equatorward boundary of the auroral oval. The TIDs are also distinguished from the streamers to which they connect by their wave-like TEC fluctuations moving more slowly equatorward than the TEC enhancements from streamer electron precipitation. TIDs previously observed propagating equatorward from the auroral oval have been identified as LSTIDs. Thus, the TIDs here are likely LSTIDs, but we lack sufficient TEC coverage necessary to demonstrate that they are indeed large scale. Furthermore, each of our events shows TID’s connection to groups of a few streamers and flow channels over a period in the order of 15 min and a longitude range of ∼15–20°, and not to single streamers. (Groups of streamers are common during substorms. However, it is not currently known if streamers and associated flow channels typically occur in such groups.) We also find evidence that a flow channel must lead to a sufficiently large ionospheric current for it to lead to a detectable LSTID, with a few tens of nT ground magnetic field decreases not being sufficient. 
    more » « less
  4. Abstract We report a new ionosphere phenomenon: Equatorial ionization anomaly (EIA) discontinuity (EIAD), based on OI 135.6 nm radiance observations from the Global Observations of Limb and Disk (GOLD), ground‐based total electron content maps and in‐situ ion density data from Constellation Observing System for Meteorology, Ionosphere, and Climate‐2. The EIAD occurs when the OI radiance of the EIA crest has a local minimum, at a fixed UT, with the radiance in the local longitude region being weaker than that on the east and west sides. In the GOLD field‐of‐view, EIAD follows the seasonal variations of EIA. EIAD appears more often over the Atlantic Ocean and Africa than over South America. It occurs more in the southern crest during the December solstice, and more in the northern crest during both equinoxes. EIAD can occur under both quiet and disturbed times. 
    more » « less